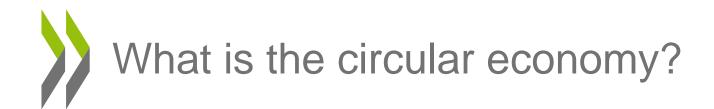
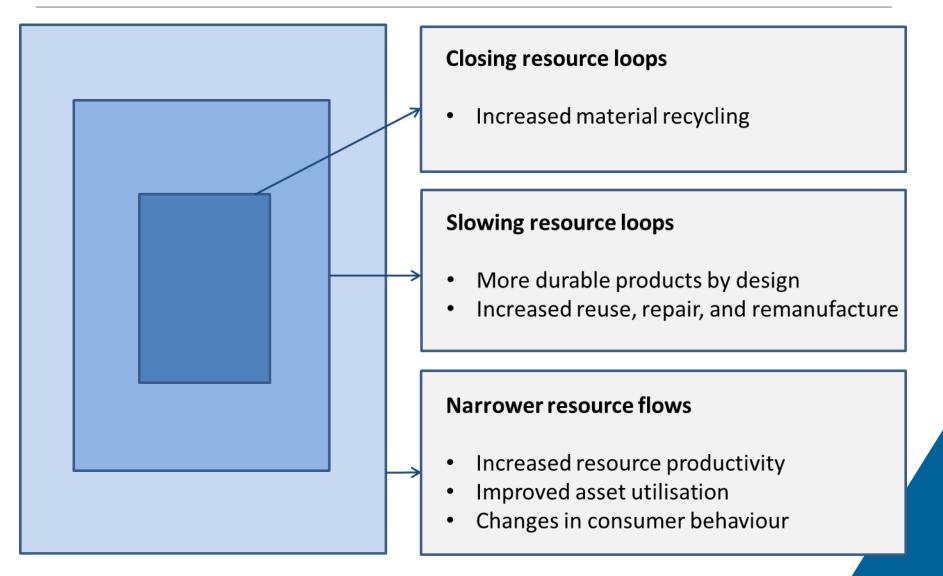

REMANUFACTURING AND THE CIRCULAR ECONOMY

Current work at the OECD

Peter Börkey and Andrew McCarthy OECD, Environment Directorate

European Council of Remanufacturing 27 November 2017, Paris

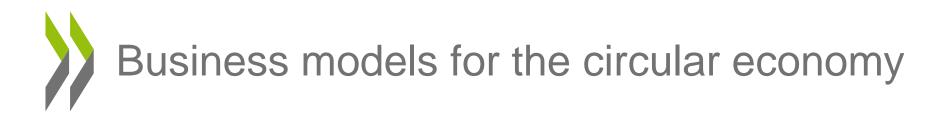




- Helps countries develop better policies for better lives
- Analyses, measures and compares experiences and policies to give advice that helps raise living standards globally
- Offers evidence-based, **independent** policy advice
- Takes a **multidisciplinary** approach
- Monitors countries' progress through peer reviews
- Seeks and sets **best practice standards**

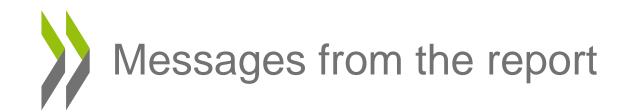
Emerging interest in a transition to a more resource efficient and circular economy

- Growing ambition at the international level:
 - OECD council recommendations on resource productivity
 - Resource efficiency targets are included in the SDGs
 - G7 process and recent introduction into the G20 agenda
- And an evolving policy landscape at the national level:
 - Circular economy roadmaps were introduced in a number of countries in 2015 - 2016
- Why the increased interest?
 - A pathway for decoupling economic activity from the use of resources and the generation of polluting by-products
 - Growth and jobs may be generated along the way
 - For resource importing countries, the circular economy can improve resource security


OECD work program for 2017 - 2018

- Science, Technology and Innovation (STI)
 - Bio- and circular value chains
 - Bio-principled cities: designing cities based on bio principles
 - Waste to resource: bio-waste
- Trade and Agriculture (TAD)
 - Examine extent of trade restrictions on recyclable metallic waste and scrap
 - Modelling (TAD Metro model) trade impacts for steel
- Environment (ENV)
 - Macroeconomics of the circular economy transition
 - Plastics in the environment
 - Food waste prevention
 - Business models for the circular economy

BUSINESS MODELS FOR A CIRCULAR ECONOMY



- CBMs involve modes of production and consumption that change the flow of materials through the economy
- OECD is currently developing a report based on existing literature
- This work addresses three main questions:
 - What is their potential environmental impact of CBMs?
 - What is their current scale and potential scalability?
 - What are the enablers and barriers to scale up, and what policies can help?

Five main business models + sub-types

Source: adapted from Accenture (2015)

- The activities underlying CBMs 3Rs, sharing, leasing are not new, but are emerging in a broader range of settings than before
- LCA literature indicates that products associated with CBMs have a small envi. footprint relative to traditional equivalents
 - But beware new risks and burden shifting across the product lifecycle
 - And beware potential rebound effects from changing prices
- CBMs remain niche in most sectors. In many cases, they are also relatively mature more widespread uptake will require new policy frameworks
- In other cases, CBMs are emerging in response to technological change, the emergence of new risks, and changing consumer preferences. Policy could support this and mitigate against any potentially desirable outcomes

A CLOSER LOOK AT REMANUFACTURING

Environmental impact of remanufacturing Insights from selected LCA literature

Author	Study type	Product Focus	Δ in resource extraction	Δ in sectoral energy consumption	∆ in waste disposal
Kerr and Ryan (2000)	LCA	Photocopiers	-19% to -25%	-27%	-35%
		Photocopiers (modular)	-39% to -48%	-68%	-47%
Smith and Keolian (2004)	LCA	Engines	-26% to -90%	-68% to -83%	-65% to -88%
Neto and Bloemhof (2009)	LCA	Personal computers	-	-80%	-
Kara (2010)	LCA	Printer cartridges	-	-	-
Gutowski et al (2011)	Meta-review	Furniture	-	-100%	-
		Clothing	-	-64%	-
		Computers	-	-57%	-
		Electric motors	-	3%	-
		Tires	-	9%	-
		Appliances	-	75%	-
		Engines	-	-4%	-
		Toner cartridges	-	-6%	-
Biswas and Rosano (2011)	LCA	Compressors	-	-	-
Liu et al (2014)	LCA	Engines	-25%	-66%	-
Wilson et al (2014)	LCA	Turbine blades	-	-36%	-
Gao et al (2017)	LCA	Turbochargers	-	-82.50%	-

• Remanufactured products have a relatively small emissions footprint

• However, most LCA studies don't take into account use-phase impacts

• Also avoided resource extraction and disposal (but what are envi impacts?)

Current scale of remanufacturing Insights from market data

Remanufacturing relative to market penetration of other CBMs

	Sector	Market penetration	Explanation	
PSS: result-oriented (chemicals)	Automotive	50 - 80%	Of manufacturer uptake	
r 55. result-offented (chemicals)	Aerospace	5 - 15%		
DSS: regult originated (digital content)	Music	50%	Of total industry revenues	
PSS: result oriented (digital content)	Books	25 - 35%		
PSS: result-oriented (lighting & heating)	Various	4 - 7.5%	Of potential ESCO uptake	
PSS: user-oriented (car sharing)	Transport	<1%	Of total global car fleet	
	Pulp and paper	38%	Of total global output	
Waste as value: recycling	Metals	0 - 30%		
	Plastics	13%		
Product life extension: refurbishment	Smartphones	4 - 8%	Of annual manufactures	
Product life extension. Teldibishment	Various	2 - 3%	Of EOL products	
	Aerospace	2 - 12%	Of total manufactures	
Draduat life extension: remanufacturing	Machinery	3 - 4%		
Product life extension: remanufacturing	Automotive	1%		
	Consumer and EEE	0 - 1%		
Idle Capacity: co-access	Lodging	1% - 6%	Of total short term bookings	

Lininee market penetration. generally less than 470

- But variation across products: more uptake in B2B industrial settings? Low manufacturing market penetration relative to other CBMs
- Considerable potential for scale up?

Barriers and enablers: your opinions?!

- The business case for remanufacturing seems clear: leveraging already existing cores can generate significant cost reductions
- But current market penetration suggests otherwise. Why?
 - Labour costs remanufacturing difficult to automate
 - Transport and administration costs ass w. reverse logistics
 - Cannabalisation fears reduced demand for premium products
 - Competition fears potential value created by designing products for remanufacturing could be captured by third parties
- What role could emerging technologies play?
 - Product tracking systems
 - Automated disassembly
- And what role could policy play?

- What could the European Remanufacturing Council do?
 - The environmental and job creation case for remanufacturing is well established
 - What is hindering scale up? We are not aware of an authoritative report assessing the reman business case across sectors. Role for ERC?
 - Improved data on adoption rates would also be useful

- What could the OECD do?
 - Remanufacturing will be included in upcoming business models report
 - Other ideas or suggestions?